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Quadratic Pairs

Working over a scheme X .

Definition (KMRT, Calmés+Fasel)
For an Azumaya OX –algebra A, a quadratic pair on A is (σ, f ) where

• σ : A → A is an orthogonal involution, and
• f : SymA,σ → OX is an OX –linear map satisfying

f (a + σ(a)) = TrdA(a)

for all sections a ∈ A.

Related to algebraic groups of type D in arbitrary characteristic/over
arbitrary schemes. Ex., every adjoint group of type Dn is some PGO+

(A,σ,f )
with deg(A) = 2n.



Deformation Problems

• X ↪→ X ′ closed embedding defined by J ⊂ OX ′ , J 2 = 0.
• G ′ an algebraic group on X ′.
• P a G ′|X –torsor (on X ).

When does P come from X ′?

Theorem (Illusie, 1972)
(i) ∃P ′ a G ′–torsor on X ′ such that P ′|X ∼= P if and only if

obs(P) ∈ H2(X ,Lie(Aut(P)) ⊗OX J ) is zero.
(ii) If obs(P) = 0, all such P ′ are classified by H1(X ,Lie(Aut(P)) ⊗OX J )
(iii) For a fixed P ′,

Ker
(
Aut(P ′) res−→ Aut(P)

) ∼= H0(X ,Lie(Aut(P)) ⊗OX J ).



Relative Obstructions
If φ : G ′ → H ′ is a morphism of groups on X ′, we get

H1(X , G ′) → H1(X , H ′)
[P] 7→ [φ∗(P)]

as well as

H2(X ,Lie(Aut(P)) ⊗OX J ) → H2(X ,Lie(Aut(φ∗(P))) ⊗OX J )
obs(P) 7→ obs(φ∗(P)).

Question
We consider PGO2n ↪→ PGL2n.

H1(X , PGO2n) → H1(X , PGL2n)
[(A, σ, f )] 7→ [A].

Is there an example where (A, σ, f ) does not deform, but A does?



Convenient Setup

Let K be a field, (C ,m), (C ′,m′) Artinian local K–algebras with residue
field K.
A surjection C ′ ↠ C with kernel J ⊂ C ′ such that J · m′ = 0 is a small
extension.

XC XC ′

X

Spec(C) Spec(C ′)

Spec(K)



Tangent-Obstruction Theory

Let P be a G–torsor on X .

D : ArtK → Sets

C 7→ {P ′ | P ′ is a G |XC –torsor, P ′|X ∼= P}/ ∼

For any small extension C ′ ↠ C with kernel J , we get

H1(
X ,Lie(Aut(P))

)
⊗KJ → D(C ′) res−→ D(C) → H2(

X ,Lie(Aut(P))
)
⊗KJ ,

a short exact sequence of pointed sets.
• The cohomology sets are always over X .



Tangent-Obstruction Theory

Given φ : G → H, and P a G–torsor. Letting

D : ArtK → Sets

C 7→ {Deformations of P to XC}/ ∼

F : ArtK → Sets

C 7→ {Deformations of φ∗(P) to XC}/ ∼

we have

H1(
X , “P”

)
⊗K J D(C ′) D(C) H2(

X , “P”
)

⊗K J

H1(
X , “φ∗(P)”

)
⊗K J F (C ′) F (C) H2(

X , “φ∗(P)”
)

⊗K J



Some Relatively Unobstructed Cases

If 2 ∈ O×
X or if deg(A) = 2, then

(A, σ, f ) deforms ⇔ A deforms.

In general,

Lie(PGLA) ∼= A/OX

Lie(PGO(A,σ,f )) ∼= {x ∈ A/OX | x + σ(x) = 0, f ◦ ad(x)|SymA,σ
= 0}.

If 2 ∈ O×
X , Lie(PGO(A,σ,f )) ∼= AℓtA,σ “= {a − σ(a) | a ∈ A}”, and

0 Lie(PGO(A,σ,f )) Lie(PGLA) N 0

1
2 (Id −σ)

is a splitting.



Some Relatively Unobstructed Cases

Over any scheme when deg(A) = 2,

Lie(PGL2) ∼= M2(OX )/OX ∼=
{[

0 b
c d

]}

Lie(PGO(M2(OX ),σ2,f2)) =
{[

0 0
0 d

]}
.

So,
Lie(PGL2) ∼= Lie(PGO(M2(OX ),σ2,f2)) ⊕ N.

and this splitting is stabilized by PGO2, so it twists to

Lie(PGLA) ∼= Lie(PGO(A,σ,f )) ⊕ N ′.



A Relatively Obstructed Example

The next case is deg(A) = 4 and 2 /∈ O×
X . Here, we construct an example

where
(A, σ, f ) does not deform, but A deforms.

Ingredients:
• Norm equivalence A2

1
∼→ D2.

• Igusa surface X over K, char(K) = 2.
• The example is a biquaternion algebra on Xk[x ]/⟨x2⟩ which does not

deform to Xk[x ]/⟨x3⟩.



Norm Equivalence

Joint work with Philippe Gille and Erhard Neher.
Two stacks:

A2
1 → SchX D2 → SchX

(T ′ → T , Q) 7→ T (T , (A, σ, f )) 7→ T

(i) T ′ → T degree 2 étale cover (i) (σ, f ) quadratic pair
(ii) Q is on T ′, deg(Q) = 2 (ii) deg(A) = 4.

We have an equivalence of stacks

N : A2
1

∼→ D2.

(T ⊔ T → T , (Q1, Q2)) 7→ (T , (Q1 ⊗OT Q2, σ1 ⊗ σ2, f⊗)).



Norm Equivalence

Let X ↪→ X ′ be an infinitesimal thickening.

(T → X ′, Q′) (X ′, (A′, σ′, f ′))

(X ⊔ X → X , (Q1, Q2)) (X , (Q1 ⊗OX Q2, σ1 ⊗ σ2, f⊗))

res

N

res

N

• Étale extensions have trivial deformation theory. ⇒ T = X ′ ⊔ X ′.
• ⇒ Q′ = (Q′

1, Q′
2).

(Q1 ⊗OX Q2, σ1 ⊗ σ2, f⊗) deforms to X ′

Both Q1 and Q2 deform to X ′.



Igusa Surface

Let E be an ordinary elliptic curve over K, K = K, char(K) = 2.

E [2] ∼= µ2 × Z/2Z and E [2](K) = {0, t}.

Z/2Z acts on E ×K E by

(a, b) 7→ (−a, b + t)

This action has a smooth, projective quotient

π : E ×K E → X

X is an Igusa surface.
• It has trivial canonical bundle, KX ∼= OX .
• dimK(H1(X , OX )) = 2, dimK(H2(X , OX )) = 1.



Igusa Surface

• The Picard scheme of X is non-reduced (Igusa, Jensen,
Srinivas+Mehta).

Pic0
X/K

∼= µ2 × E/⟨t⟩.

µ2 = Spec(k[x ]/⟨x2⟩), and let τ3 = Spec(k[x ]/⟨x3⟩). Consider

Xµ2 Xτ3

X

For L on X , L = (x , y) ∈ Pic0
X/K,

TL(Pic0
X/K) ∼= Tx (µ2) ⊕ Ty (E/⟨t⟩) ∼= H1(X , OX ).

any L′ with non-trivial Tx (µ2) component does not deform to Xτ3 .



Sketch of the Construction
Using explicit cocycles, define

Q = EndOX (V) and P = EndOX (W)

two quaternions on X . Calculate: Q(X ) = P(X ) = (Q ⊗OX P)(X ) = K.

Proposition
Let char(K) = 2 and X a smooth, projective surface over K with trivial
canonical bundle. Let (A, σ, f ) be an Azumaya algebra with quadratic pair
on X such that A(X ) Id +σ−−−→ AℓtA,σ(X ) and SymA,σ(X ) f−→ OX (X ) are
both zero. Then,

H2(X ,Lie(PGO(A,σ,f ))) → H2(X ,Lie(PGLA))

is zero also.

• (Q ⊗OX P, σQ ⊗ σP , f⊗) satisfies the proposition.
• ⇒ any deformation of Q ⊗OX P to Xµ2 itself deforms to Xτ3 .



Sketch of the Construction

For Q (likewise for P)

0 → OX → Q → Q/OX → 0

induces

H2(X , OX ) H2(X , Q) H2(X , Q/OX ) 0 = H3(X , OX )

H2(X ,Lie(GLV)) H2(X ,Lie(PGLQ))

Serre dual to

0 → (Q/OX )∨(X ) → Q∨(X ) 0−→ O∨
X (X )

• ⇒ H2(X , Q) ∼→ H2(X , Q/OX )
• ⇒ Q = EndOX (V) deforms if and only if V deforms.



Sketch of the Construction

TrdQ : Q → OX and TrdP : P → OX induce

H1(X , Q) → H1(X , OX ) H1(X , P) → H1(X , OX )
[V ′] 7→ [det(V ′)] [W ′] 7→ [det(W ′)].

By analyzing the module structures of Q, P, see that these maps have
linearly independent images in

H1(X , OX ) = Tx (µ2) ⊕ Ty (E/⟨t⟩)

• ⇒ some V ′ or W ′ on Xµ2 has obstructed determinant bundle.
• ⇒ some V ′ or W ′ is obstructed
• ⇒ some Q′ or P ′ is obstructed.



The Example

• Take Q′ on Xµ2 deforming Q, obstructed on Xτ3 .

(Q′ ⊗OXµ2
(P|Xµ2

), σQ′ ⊗ (σP)|Xµ2
, f ′

⊗) ∃A′′

(Q ⊗OX P, σQ ⊗ σP , f⊗)

Xµ2 Xτ3

X

• No deformation (A′′, σ′′, f ′′) on Xτ3 exists.



Thank You


