Cohomological Obstructions to Quadratic Pairs over Schemes

Cameron Ruether

Joint with Philippe Gille and Erhard Neher

Memorial University of Newfoundland

CMS Summer 2023, University of Ottawa June 3, 2023

$char(\mathbb{F}) \neq 2$

$$\{ ext{quadratic forms}\}\longleftrightarrow \{ ext{Symmetric bilinear forms}\}$$
 $(q\colon V o \mathbb{F}) \longmapsto b_q(x,y)=q(x+y)-q(x)-q(y)$

$$q_b(x) = b(x,x) \leftarrow (b: V \times V \to \mathbb{F})$$

- $q = \frac{1}{2}q_{b_q}$ and $b = \frac{1}{2}b_{q_b}$.
- $PGO^+(V, q) = PGO^+(End_{\mathbb{F}}(V), \sigma_q)$ when q is regular.
- PGO $^+(A, \sigma)$ are smooth of type D.

Involutions

In any characteristic, let (A, σ) be a c.s.a. with \mathbb{F} -linear involution.

- σ is *orthogonal* if σ_{sep} on $A_{\text{sep}} = \mathsf{M}_r(\mathbb{F}_{\text{sep}})$ is adjoint to a symmetric bilinear form.
- σ is weakly-symplectic if σ_{sep} is adjoint to a skew-symmetric bilinear form.
- \bullet $\,\sigma$ is symplectic if σ_{sep} is adjoint to an alternating bilinear form.

If $char(\mathbb{F}) = 2$, $O(A, \sigma)$ may not be smooth.

Quadratic Pairs

Definition

Let A be a central simple \mathbb{F} -algebra. A *quadratic pair* on A is (A, σ, f) where

- σ is an orthogonal involution on A, and
- $f: \mathsf{Sym}(A,\sigma) \to \mathbb{F}$ is a linear map satisfying

$$f(a+\sigma(a))=\operatorname{Trd}_A(a)$$

for all $a \in A$. Here $Sym(A, \sigma) = \{a \in A \mid \sigma(a) = a\}$.

- If $char(\mathbb{F}) \neq 2$, $\Rightarrow f = \frac{1}{2} Trd_{\mathcal{A}}$.
- The orthogonal group

$$O(A, \sigma, f) = \{ a \in A \mid \sigma(a) = a^{-1}, f(asa^{-1}) = f(s) \}$$

is smooth. $O^+(A, \sigma, f)$ is semisimple type D.

Quadratic Pairs and Quadratic Forms

• If $A = \operatorname{End}_{\mathbb{F}}(V)$, then σ is adjoint to a regular $b \colon V \times V \to \mathbb{F}$.

$$(V \otimes_{\mathbb{F}} V, \mathsf{switch}) \xrightarrow{\sim} (\mathsf{End}_{\mathbb{F}}(V), \sigma)$$

 $x \otimes y \mapsto b(x, \underline{\hspace{1em}})y$

Theorem (KMRT)

{quadratic pairs involving σ } \leftrightarrow {q whose polar is b}

Idea:
$$f(x \otimes x) = q(x)$$
 and $f(x \otimes y + y \otimes x) = b(x, y)$

Classification

Let (A, σ) c.s.a. with orthogonal involution. Define

$$\begin{aligned} & \mathsf{Sym}(A,\sigma) = \{ a \in A \mid \sigma(a) = a \} \\ & \mathsf{Skew}(A,\sigma) = \{ a \in A \mid \sigma(a) = -a \} \\ & \mathsf{Symd}(A,\sigma) = \{ a + \sigma(a) \mid a \in A \} \\ & \mathsf{Alt}(A,\sigma) = \{ a - \sigma(a) \mid a \in A \} \end{aligned}$$

The trace form

$$A \times A \mapsto \mathbb{F}$$

 $(a,b) \mapsto \operatorname{Trd}_A(ab)$

is a regular, symmetric, bilinear form.

• $\operatorname{Sym}(A, \sigma)^{\perp} = \operatorname{Alt}(A, \sigma)$ and $\operatorname{Alt}(A, \sigma)^{\perp} = \operatorname{Sym}(A, \sigma)$

Classification

Theorem (KMRT)

If (A, σ, f) is a quadratic pair on A, then there exists $\ell \in A$ such that

- $\ell + \sigma(\ell) = 1$,
- $f(s) = \operatorname{Trd}_{A}(\ell s)$,
- ℓ is unique up to addition by an element from $Alt(A, \sigma)$.

Conversely, for any $\ell \in A$ satisfying $\ell + \sigma(\ell) = 1$, the linear map

$$f: \mathsf{Sym}(A, \sigma) \to \mathbb{F}$$

 $s \mapsto \mathsf{Trd}_A(\ell s)$

makes (A, σ, f) a quadratic pair. This form only depends on $[\ell] \in A/Alt(A, \sigma)$.

Over a Scheme

Generalized by Calmès and Fasel.

- S is a fixed base scheme
- \mathfrak{Sch}_S site with the fppf topology
- \mathcal{O} the sheaf of rings $\mathcal{O}(T) = \Gamma(T, \mathcal{O}_T)$ for $T \in \mathfrak{Sch}_S$
- $\mathcal A$ an Azumaya $\mathcal O$ –algebra of constant degree. So $\exists \{T_i \to S\}_{i \in I}$ such that

$$A|_{T_i} \cong M_r(\mathcal{O})|_{T_i}$$

Definition

Let ${\mathcal A}$ be an Azumaya ${\mathcal O}$ –algebra. A *quadratic pair* on ${\mathcal A}$ is $({\mathcal A},\sigma,f)$ where

- σ is an orthogonal involution on \mathcal{A} , and
- $f:\mathcal{S}\!\mathit{ym}_{\mathcal{A},\sigma} o \mathcal{O}$ is an \mathcal{O} -linear natural transformation satisfying

$$f(a+\sigma(a))=\operatorname{Trd}_{\mathcal{A}}(a)$$

for all $T \in \mathfrak{Sch}_{S}$ and $a \in \mathcal{A}(T)$.

Question

- Given (A, σ) , when can it be extended to (A, σ, f) ?
- Given (A, σ) , what is a classification of all possible (A, σ, f) ?

 $\operatorname{Id} + \sigma \colon \mathcal{A} \to \mathcal{A}$ and $\operatorname{Id} - \sigma \colon \mathcal{A} \to \mathcal{A}$. Define

- $Sym_{A,\sigma} = \ker(\operatorname{Id} \sigma)$
- $Skew_{A,\sigma} = ker(Id + \sigma)$
- $Symd_{A,\sigma} = Im(Id + \sigma)$
- $\mathcal{A}\ell t_{\mathcal{A},\sigma} = \operatorname{Im}(\operatorname{Id} \sigma)$

Over an Affine Scheme

If S is an affine scheme,

- $Sym_{A,\sigma}$, $A\ell t_{A,\sigma}$ are direct summands of A when σ is orthogonal, and mutually perpendicular w.r.t. the trace form.
- So, linear forms $f: \mathcal{S}\!\mathit{ym}_{\mathcal{A},\sigma} \to \mathcal{O}$ correspond to $\ell \in \mathcal{A}(S)$ with $\ell + \sigma(\ell) = 1$ up to addition by an element of $\mathcal{A}\ell t(\mathcal{A},\sigma)$.

If S is any scheme, and (A, σ, f) a quadratic pair

- $\{U_i \to S\}_{i \in I}$ an affine open cover
- $(A|_{U_i}, \sigma|_{U_i}, f|_{U_i})$ will be given by some $\ell_i \in A(U_i)$ with $\ell_i + \sigma(\ell_i) = 1$.
- $\Rightarrow 1 \in Symd_{A,\sigma}(U_i)$ for all $i \in I$,
- ullet \Rightarrow $1 \in \mathcal{S}\!\mathit{ymd}_{\mathcal{A},\sigma}(\mathcal{S}).$

Locally Quadratic Involutions

Definition

We call (\mathcal{A}, σ) an Azumaya \mathcal{O} -algebra with *locally quadratic involution* if $1 \in \mathit{Symd}_{\mathcal{A}, \sigma}(S)$.

$$0 \longrightarrow Skew_{\mathcal{A},\sigma} \hookrightarrow \longrightarrow \mathcal{A} \xrightarrow{\operatorname{Id} + \sigma} Symd_{\mathcal{A},\sigma} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow Skew_{\mathcal{A},\sigma}/A\ell t_{\mathcal{A},\sigma} \hookrightarrow \longrightarrow A/A\ell t_{\mathcal{A},\sigma} \xrightarrow{\pi} Symd_{\mathcal{A},\sigma} \longrightarrow 0$$

Cohomological Obstructions

$$egin{array}{ccccc} 1 &\longmapsto & \Omega(\mathcal{A},\sigma) \ &&&&\downarrow \ &&&\downarrow \ 1 &\longmapsto & \omega(\mathcal{A},\sigma) \end{array}$$

We call $\Omega(\mathcal{A}, \sigma)$ the strong obstruction and $\omega(\mathcal{A}, \sigma)$ the weak obstruction.

Cohomological Obstructions

Theorem (Gille, Neher, R.)

- $\Omega(\mathcal{A}, \sigma) = 0 \Leftrightarrow \exists f = \mathsf{Trd}_{\mathcal{A}}(\ell_{_}) \text{ with } \ell + \sigma(\ell) = 1 \text{ for } \ell \in \mathcal{A}(S).$
- $\omega(\mathcal{A}, \sigma) = 0 \Leftrightarrow \exists f : \mathcal{S}\!\mathit{ym}_{\mathcal{A}, \sigma} \to \mathcal{O} \ \mathit{making} \ (\mathcal{A}, \sigma, f) \ \mathit{a quadratic pair}.$
- There is a classification

$$\{f \text{ extending } (\mathcal{A}, \sigma)\} \leftrightarrow \pi(S)^{-1}(1) \subset (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A}, \sigma})(S).$$

Proof.

- Any (A, σ, f) is given locally by ℓ_i , which glue to a section $\lambda \in (A/A\ell t_{A,\sigma})(S)$.
- Any global section λ is locally given by ℓ_i from \mathcal{A} , the $f_i = \operatorname{Trd}_{\mathcal{A}}(\ell_i \underline{\hspace{0.5cm}})$ glue into a global f.
- $\omega(\mathcal{A},\sigma)=[\pi^{-1}(1)]\in H^1(S,\mathit{Skew}_{\mathcal{A},\sigma}/\mathcal{A}\ell t_{\mathcal{A},\sigma})$ where

$$\pi^{-1}(1)\colon \mathfrak{Sch}_{\mathcal{S}} o \mathfrak{Sets}, \quad \pi(T)^{-1}(1|_T)$$

An Example

Let $char(\mathbb{F}) = 2$. Take E an ordinary elliptic curve as the base scheme.

$$E \xrightarrow{\cdot 2} E$$

is an $E[2] = \mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z}$ torsor.

$$\mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathsf{PGL}_2$$

 $\Rightarrow E \wedge^{\mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z}} \mathsf{PGL}_2$ is a PGL_2 -torsor, so defines \mathcal{Q} a quaternion algebra. It has canonical involution (\mathcal{Q}, σ) .

- ullet σ is symplectic, hence also orthogonal.
- σ can be extended to a quadratic pair (\Rightarrow locally quadratic). $\Rightarrow \omega(\mathcal{Q}, \sigma) \neq 0$.
- $Q(E) = \mathbb{F}$. So $\ell + \sigma(\ell) = 2\ell = 0$ for all $\ell \in Q(E)$. $\Rightarrow \Omega(Q, \sigma) = 0$.

Another Example

 $\mathsf{char}(\mathbb{F}) = 2, \ \mathbb{F} = \overline{\mathbb{F}}. \ \mathsf{Let} \ \Gamma = \mathsf{PGL}(\mathbb{F}_4) \ \mathsf{as} \ \mathsf{an} \ \mathsf{abstract} \ \mathsf{group}, \ \Gamma_{\mathsf{Spec}(\mathbb{F})} \ \mathsf{the} \ \mathsf{constant} \ \mathsf{group} \ \mathsf{scheme}.$

Serre: $\exists Y \to S$ a Γ -cover between smooth projective \mathbb{F} -varieties. This is a $\Gamma_{\operatorname{Spec}(\mathbb{F})}$ -torsor.

$$\Gamma_{\mathsf{Spec}(\mathbb{F})} \hookrightarrow \mathsf{PGL}_2$$

 $\Rightarrow Y \wedge^{\Gamma_{Spec(\mathbb{F})}} PGL_2$ is a PGL_2 -torsor, so defines (\mathcal{Q}, σ) a quaternion algebra with symplectic/orthogonal involution.

- ullet σ is locally quadratic.
- (Q, σ) splits over Y.
- If we had (Q, σ, f) , then $f|_Y : Sym_{\mathsf{M}_2(\mathcal{O})|_Y, \sigma|_Y} \to \mathcal{O}|_Y$ must be Γ -equivariant.
- $\Rightarrow f = 0$, contradiction.
- So $\omega(\mathcal{Q}, \sigma) \neq 0$. $(\Rightarrow \Omega(\mathcal{Q}, \sigma) \neq 0$.)

Thank You