The Norm Functor over Schemes

Cameron Ruether Joint with Philippe Gille and Erhard Neher

Memorial University of Newfoundland

Groups, Rings, Lie and Hopf Algebras V MUN Harlow UK August 22, 2023

Corestriction

- Riehm: "The Corestriction of Algebraic Structures" (1970)
 - $\circ~\mathbb{K}/\mathbb{F}$ a finite separable field extension.
 - For a \mathbb{K} -object X, functorially assigns an \mathbb{F} -object Cor(X).
 - $\circ\,$ For central simple algebras, we get a diagram

$$\begin{array}{l} \mathsf{Br}(\mathbb{K}) \stackrel{\sim}{\longrightarrow} H^2(\mathsf{Gal}(\mathbb{F}_{\mathrm{sep}}/\mathbb{K}), \mathbb{F}_{\mathrm{sep}}^{\times}) \\ & \downarrow^{[\mathsf{Cor}]} \qquad \qquad \downarrow^{\mathrm{cor}} \\ \mathsf{Br}(\mathbb{F}) \stackrel{\sim}{\longrightarrow} H^2(\mathsf{Gal}(\mathbb{F}_{\mathrm{sep}}/\mathbb{F}), \mathbb{F}_{\mathrm{sep}}^{\times}) \end{array}$$

Norm for Étale Extensions

- Knus & Ojanguren: "A Norm for Modules and Algebras" (1975)
 S/R a finite étale ring extension.
 - Define a functor $N_{S/R}$: S-Mod $\rightarrow R$ -Mod.
 - If $S = R \times \ldots \times R$, an *S*-module is $M_1 \times \ldots \times M_d$, and

$$N_{S/R}(M_1 \times \ldots \times M_d) = M_1 \otimes_R \ldots \otimes_R M_d$$

- Since S/R is finite étale, the general case is obtained from above by faithfully flat descent.
- $N_{S/R}$ also preserves Azumaya algebras and induces a homomorphism $Br(S) \rightarrow Br(R)$.

Ferrand's Norm Functor

- Ferrand: "Un Foncteur Norme" (1998)
 - $\circ S/R$ a finite locally free extension of rings.
 - Defines a functor $N_{S/R}$: S-Mod $\rightarrow R$ -Mod which generalizes the previous two constructions.
 - The construction does not use descent, instead based on *polynomial laws*.

For two R-modules M_1, M_2 , a *polynomial law* between them is a natural transformation

 $\nu \colon \mathbf{W}(M_1) \to \mathbf{W}(M_2)$

where $\mathbf{W}(M)$ is the functor

$$\mathbf{W}(M)\colon\mathfrak{Allg}_R\to\mathfrak{Ab}\\ R'\mapsto M\otimes_R R'$$

Ferrand's Norm Functor

Since S/R is finite locally free, we have det: $S \otimes_R R' \to R'$ and a polynomial law

norm:
$$\mathbf{W}(_RS) \to \mathbf{W}(R)$$

 $s \otimes r' \mapsto \det(s \otimes r').$

• Properties of N_{S/R}:

• For $M \in S$ -Mod, there is a polynomial law $\nu_M \colon \mathbf{W}(_R M) \to \mathbf{W}(N_{S/R}(M))$ satisfying

$$\nu_M((s\otimes r')m') = \operatorname{norm}(s\otimes r')\nu_M(m').$$

• ν_M is universal. If $\nu' : \mathbf{W}(_R M) \to \mathbf{W}(M')$ is also "norm semi-linear" then $\exists ! R$ -module map $\varphi : N_{S/R}(M) \to M'$ such that $\nu' = \varphi \circ \nu_M$.

Ferrand's Norm Functor

• Properties of
$$N_{S/R}$$
:
• $N_{S/R}(S) = R$ and $\nu_S = \text{norm.}$
• If $S = R \times \ldots \times R$, then
 $N_{S/R}(M_1 \times \ldots \times M_d) = M_1 \otimes_R \ldots \otimes_R M_d$ and

$$\nu_M(m_1,\ldots,m_d)=m_1\otimes\ldots\otimes m_d.$$

 \circ For $R' \in \mathfrak{Alg}_R$ and $M \in S ext{--Mod}$,

$$N_{(S\otimes_R R')/R'}(M\otimes_R R')\cong N_{S/R}(M)\otimes_R R'.$$

Setting over a Scheme

Let S be an arbitrary base scheme.

- Work with sheaves on $\mathfrak{Sch}_{\mathcal{S}}$ for the fppf topology.
- Modules, algebras, etc., are over

$$\mathcal{O}\colon\mathfrak{Sch}_{\mathcal{S}} o\mathfrak{Ab} \ T\mapsto\mathcal{O}_{\mathcal{T}}(\mathcal{T})$$

In this context: An \mathcal{O} -module $\mathcal{M} : \mathfrak{Sch}_{\mathcal{S}} \to \mathfrak{Ab}$ is quasi-coherent if and only if for every morphism $V \to U \in \mathfrak{Sch}_{\mathcal{S}}$ where U, V are affine schemes,

$$\mathcal{M}(V) \cong \mathcal{M}(U) \otimes_{\mathcal{O}(U)} \mathcal{O}(V).$$

Globalizing the Norm Functor

Let $f: T \to S$ be a finite locally free morphism of schemes. $\Rightarrow \forall S' \in \mathfrak{Sch}_S,$

$$\mathcal{O}(S') \to \mathcal{O}(T \times_S S')$$

is a finite locally free ring extension. This means we have a norm natural transformation

norm:
$$f_*(\mathcal{O}|_T) \to \mathcal{O}$$
.

We want to define a functor $N_{T/S}$: $\mathfrak{QCoh}_T \to \mathfrak{QCoh}_S$ which generalizes Ferrand's norm.

Lemma (Stacks Project Tags 021V, 03DM)

There is an equivalence of categories between sheaves on \mathfrak{Sch}_S and sheaves on \mathfrak{Aff}_S which preserves quasi-coherence.

Globalizing the Norm Functor

For $\mathcal{M} \in \mathfrak{QCoh}_{\mathcal{T}}$, define

$$egin{aligned} &\mathcal{N}_{T/S}(\mathcal{M})\colon \mathfrak{Aff}_S o \mathfrak{Ab} \ &U\mapsto \mathcal{N}_{\mathcal{O}(T imes_S U)/\mathcal{O}(U)}(\mathcal{M}(T imes_S U)). \end{aligned}$$

which will be a quasi-coherent sheaf due to the properties of Ferrand's norm.

Furthermore, the universal polynomial laws

$$\nu_{\mathcal{M}(T\times_{\mathcal{S}}U)} \colon \mathbf{W}(_{\mathcal{O}(U)}\mathcal{M}(T\times_{\mathcal{S}}U)) \to \mathbf{W}(N_{\mathcal{O}(T\times_{\mathcal{S}}U)/\mathcal{O}(U)}(\mathcal{M}(T\times_{\mathcal{S}}U)))$$

assemble into a natural transformation $\nu_{\mathcal{M}}$: $f_*(\mathcal{M}) \to N_{\mathcal{T}/S}(\mathcal{M})$ satisfying

$$\nu_{\mathcal{M}}(tm) = \operatorname{norm}(t)\nu_{\mathcal{M}}(m)$$

for all $t \in f_*(\mathcal{O}|_T)$ and $m \in f_*(\mathcal{M})$.

Properties of the Norm Functor

We get a sheaf $N_{T/S}(\mathcal{M})$: $\mathfrak{Sch}_S \to \mathfrak{Ab}$ and a natural transformation $\nu_{\mathcal{M}}$: $f_*(\mathcal{M}) \to N_{T/S}(\mathcal{M})$.

- $\circ~N_{T/S}(\mathcal{M})$ is quasi-coherent by construction.
- ν_M is universal. If $\mathcal{M}' \in \mathfrak{QCoh}_S$ and $\nu \colon f_*(\mathcal{M}) \to \mathcal{M}'$ with $\nu(tm) = \operatorname{norm}(t)\nu(m)$, then $\exists ! \mathcal{O}$ -module morphism $\varphi \colon N_{T/S}(\mathcal{M}) \to \mathcal{M}'$ such that $\nu = \varphi \circ \nu_{\mathcal{M}}$.

• If $T = S \sqcup \ldots \sqcup S$ then

$$N_{T/S}(\mathcal{M}_1,\ldots,\mathcal{M}_d) = \mathcal{M}_1 \otimes_{\mathcal{O}} \ldots \otimes_{\mathcal{O}} \mathcal{M}_d.$$

Furthermore, if $T \rightarrow S$ is a finite étale cover of degree d, then

- \mathcal{M} finite locally free of rank $r \Rightarrow N_{T/S}(\mathcal{M})$ finite locally free of rank r^d .
- \mathcal{A} is an Azumaya $\mathcal{O}|_{\mathcal{T}}$ -algebra of degree $r \Rightarrow N_{\mathcal{T}/S}(\mathcal{A})$ is an Azumaya \mathcal{O} -algebra of degree r^d .

The Norm Stack Morphism

We get a functor $N_{T/S}$: $\mathfrak{QCoh}_T \to \mathfrak{QCoh}_S$.

Analogously, for any $S' \in \mathfrak{Sch}_S$, we get a functor $N_{(T \times_S S')/S'} : \mathfrak{QCoh}_{T \times_S S'} \to \mathfrak{QCoh}_S$. These fit together into a morphism of stacks.

Let $p: \mathfrak{QCoh}_{\mathrm{fff}} \to \mathfrak{Sch}_{S}$ be the stack with objects $(T' \to S', \mathcal{M}')$ where $\circ T' \to S'$ is a finite locally free morphism in \mathfrak{Sch}_{S} , $\circ \mathcal{M}'$ is a quasi-coherent $\mathcal{O}|_{T'}$ -module, $\circ p(T' \to S', \mathcal{M}') = S'$.

Theorem

We have a norm stack morphism

$$egin{aligned} & \mathcal{N}\colon\mathfrak{QCoh}_{\mathrm{flf}} o\mathfrak{QCoh}\ & (\mathcal{T}' o \mathcal{S}',\mathcal{M}')\mapsto(\mathcal{S}',\mathcal{N}_{\mathcal{T}'/\mathcal{S}'}(\mathcal{M}')). \end{aligned}$$

Cohomology of the Norm

Lemma (Giraud "Cohomologie non Abélienne")

If $\varphi : \mathfrak{F} \to \mathfrak{G}$ is a morphism of gerbes over \mathfrak{Sch}_S and $x \in \mathfrak{F}(S)$, then the associated group homomorphism $\varphi^* : \operatorname{Aut}(x) \to \operatorname{Aut}(\varphi(x))$ induces the following map on cohomology

$$egin{aligned} & H^1(S, \operatorname{Aut}(x)) o H^1(S, \operatorname{Aut}(arphi(x))) \ & [x'] \mapsto [arphi(x')] \end{aligned}$$

since $H^1(S, \operatorname{Aut}(x)) = \{ \text{Isomorphism classes in } \mathfrak{F}(S) \}$ and $H^1(S, \operatorname{Aut}(\varphi(x))) = \{ \text{Isomorphism classes in } \mathfrak{G}(S) \}.$

Cohomology of the Norm

Consider the groupoid $\mathfrak{Mod}_r^{d-\mathrm{\acute{e}t}}$ of

- pairs $(T \to S, \mathcal{M})$ where $T \to S$ is finite étale of degree d and \mathcal{M} is a locally free $\mathcal{O}|_T$ -module of rank r,
- morphisms $(g, \varphi) \colon (T' \to S, \mathcal{M}') \to (T \to S, \mathcal{M})$ where $g \colon T' \to T$ and $\varphi \colon \mathcal{M}' \xrightarrow{\sim} g^*(\mathcal{M})$.

Then $\operatorname{Aut}(S^{\sqcup d} \to S, \mathcal{O}|_{S^{\sqcup d}}^r)) \cong (\operatorname{GL}_r)^d \rtimes \mathbb{S}_d.$

 $\mathfrak{Mod}_r^{d-\text{\acute{e}t}}$ is equivalent to the category of $((\mathsf{GL}_r)^d \rtimes \mathbb{S}_d)$ -torsors.

Cohomology of Modules

The norm gives a functor $N \colon \mathfrak{Mod}_r^{d-\mathrm{\acute{e}t}} \to \mathfrak{Mod}_{r^d}$ and

$$N_{S^{\sqcup d}/S}(\mathcal{O}|_{S^{\sqcup d}}^r) = (\mathcal{O}^r)^{\otimes d} = \mathcal{O}^{r^d}.$$

The homomorphism between automorphism groups is the Segre embedding

Seg:
$$(\mathsf{GL}_r)^d \rtimes \mathbb{S}_d \to \mathsf{GL}_{r^d}$$

which sends $(B_1, \ldots, B_d) \to B_1 \otimes \ldots \otimes B_d$, the tensor of linear maps, and sends $\sigma \in \mathbb{S}_d$ to the permutation of the tensor factors of $\mathcal{O}^{r^d} = (\mathcal{O}^r)^{\otimes d}$.

The induced map on cohomology is

$$H^1(S, (\operatorname{GL}_r)^d \rtimes \mathbb{S}_d) \to H^1(S, \operatorname{GL}_{r^d})$$

 $[(T \to S, \mathcal{M})] \mapsto [N_{T/S}(\mathcal{M})].$

Cohomology of Azumaya Algebras

Similarly, we get a functor $N: \mathfrak{Ayu}_r^{d-\mathrm{\acute{e}t}} o \mathfrak{Ayu}_r^{d-\mathrm{\acute{e}t}}$ and

$$N(S^{\sqcup d}
ightarrow S, \mathsf{M}_r(\mathcal{O}|_{S^{\sqcup d}})) = \mathsf{M}_{r^d}(\mathcal{O})$$

with associated group homomorphism

$$\operatorname{PSeg}: (\operatorname{PGL}_r)^d \rtimes \mathbb{S}_d \to \operatorname{PGL}_{r^d}.$$

Its map on cohomology is

$$\begin{aligned} H^1(S, (\mathsf{PGL}_r)^d \rtimes \mathbb{S}_d) &\to H^1(S, \mathsf{PGL}_{r^d}) \\ [(T \to S, \mathcal{A})] &\mapsto [N_{T/S}(\mathcal{A})]. \end{aligned}$$

Restricting the Segre Embedding

The Segre embedding $(PGL_{2r})^{2d} \rtimes \mathbb{S}_{2d} \to PGL_{(2r)^{2d}}$ restricts to

$$(\mathsf{PSp}_{2r})^{2d} \rtimes \mathbb{S}_d \to \mathsf{PGO}_{(2r)^{2d}}$$

and in the case r = 1, d = 1 this yields an isomorphism

$$(\mathsf{PSp}_2)^2 \rtimes \mathbb{S}_2 \xrightarrow{\sim} \mathsf{PGO}_4.$$

$A_1 \times A_1 \equiv D_2$

- Type $A_1 \times A_1$:
 - Objects are $(T \to S, Q)$ where $T \to S$ is étale of degree 2 and Q is a quaternion algebra.
 - Since $PGL_2 \cong PSp_2$, these are $((PSp_2)^2 \rtimes \mathbb{S}_2)$ -torsors.
- Type *D*₂:
 - Objects are (\mathcal{A}, σ, f) , Azumaya \mathcal{O} -algebras of degree 4 with a quadratic pair (σ is an orthogonal involution and $f : Sym_{\mathcal{A},\sigma} \to \mathcal{O}$ is a linear map).
 - $\circ \text{ Morphisms are } \varphi \colon (\mathcal{A}, \sigma) \overset{\sim}{\longrightarrow} (\mathcal{A}', \sigma') \text{ such that } f' \circ \varphi = f.$
 - These are PGO₄-torsors.

$$A_1 \times A_1 \equiv D_2$$

Theorem

The norm gives an equivalence of categories (more generally of stacks)

$$\begin{split} & \mathcal{N} \colon \mathcal{A}_1 \times \mathcal{A}_1 \to \mathcal{D}_2 \\ & (\mathcal{T} \to \mathcal{S}, \mathcal{Q}) \mapsto (\mathcal{N}_{\mathcal{T}/\mathcal{S}}(\mathcal{Q}), \sigma', f'). \end{split}$$

This is a generalization of §15.B in The Book of Involutions where they use the norm for étale extension of a field. A similar result over schemes appeared in a paper by A. Auel where it was assumed $2 \in \mathcal{O}(S)^{\times}$.

Thank You