Killing Forms, W-Invariants, and the Tensor Product Map

Cameron Ruether

University of Ottawa

Combinatorics of Group Actions and its Applications
Memorial University
August 28, 2017
Context

- Interested in invariant quadratic forms associated to linear algebraic groups.
Context

- Interested in invariant quadratic forms associated to linear algebraic groups.
- S. Garibaldi, A. Merkurjev, J.-P. Serre construct $\mathbb{Q}(G)$ in [1].
Interested in invariant quadratic forms associated to linear algebraic groups.

S. Garibaldi, A. Merkurjev, J.-P. Serre construct $Q(G)$ in [1].

$Q(G)$ Appears in work by S. Garibaldi [2], S. Baek [3], as well as by A. Merkurjev, A. Neshitov, and K. Zainoulline [4] relating to cohomological invariants of linear algebraic groups.
Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.

G has a root system $\Phi \subseteq T^*$ with Weyl group W. W acts on Φ by permuting its elements, but since W is crystallographic this action extends to all of T^*. In particular W acts on the symmetric tensor product $S(T^*)$, and so we can discuss invariant quadratic forms.

$S^2(T^*)^W = Q(G)$.

Linear Algebraic Group
Let G be a split, semisimple, linear algebraic group (over an alg. closed field F) with a maximal torus T.

G has a root system $\Phi \subseteq T^*$ with Weyl group W.
Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.

- G has a root system $\Phi \subseteq T^*$ with Weyl group W.
- W acts on Φ by permuting its elements, but since W is crystallographic this action extends to all of T^*.

Killing Forms, W-Invariants, and the Tensor Product Map University of Ottawa
Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.

G has a root system $\Phi \subseteq T^*$ with Weyl group W.

W acts on Φ by permuting its elements, but since W is *crystallographic* this action extends to all of T^*.

In particular W acts on the symmetric tensor product $S(T^*)$, and so we can discuss invariant quadratic forms.
Let G be a split, semisimple, linear algebraic group (over an alg. closed field \mathbb{F}) with a maximal torus T.

G has a root system $\Phi \subseteq T^*$ with Weyl group W.

W acts on Φ by permuting its elements, but since W is \textit{crystallographic} this action extends to all of T^*.

In particular W acts on the symmetric tensor product $S(T^*)$, and so we can discuss invariant quadratic forms.

$S^2(T^*)^W = Q(G)$.
An example of a fixed element is the *Killing form* \(K = \sum_{\alpha \in \Phi} \alpha^2 \).
An example of a fixed element is the *Killing form* $\mathcal{K} = \sum_{\alpha \in \Phi} \alpha^2$.

Analogous to the Killing form in Lie theory, $\mathcal{K}(x, y) = \text{Tr}(\text{ad}(x) \text{ad}(y))$ on $\text{Lie}(G)$.
When G is a simple group, $S^2(\mathcal{T}^*)^W = \mathbb{Z}\langle q \rangle$ where q is called the normalized Killing form.
W-Invariants

- When G is a simple group, $S^2(T^*)^W = \mathbb{Z}\langle q \rangle$ where q is called the normalized Killing form.
- If G is semisimple, $S^2(T^*)^W = \mathbb{Z}\langle q_1 \rangle \oplus \ldots \oplus \mathbb{Z}\langle q_m \rangle$.
Examples

<table>
<thead>
<tr>
<th>Group</th>
<th>Killing Form</th>
<th>Normalized Killing Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SL}(V), \dim(V) = n + 1$</td>
<td>$4(n + 1) \sum_{i,j=1}^{n} e_i e_j$</td>
<td>$\sum_{i,j=1}^{n} e_i e_j$</td>
</tr>
<tr>
<td>$\text{SO}(V), \dim(V) = 2n$</td>
<td>$4(n - 1) \sum_{i=1}^{n} e_i^2$</td>
<td>$\sum_{i=1}^{n} e_i^2$</td>
</tr>
<tr>
<td>$\text{SO}(V), \dim(V) = 2n + 1$</td>
<td>$4(n - 2) \sum_{i=1}^{n} e_i^2$</td>
<td>$\sum_{i=1}^{n} e_i^2$</td>
</tr>
<tr>
<td>$\text{Sp}(V), \dim(V) = 2n$</td>
<td>$4(n + 1) \sum_{i=1}^{n} e_i^2$</td>
<td>$\sum_{i=1}^{n} e_i^2$</td>
</tr>
</tbody>
</table>

Where in call cases $T^* = \langle e_i \mid 1 \leq i \leq n \rangle$.

Killing Forms, W-Invariants, and the Tensor Product Map

University of Ottawa
Induced Map on W-Invariants

- $Q(G)$ is functorial. If $\rho: G \to H$ is a homomorphism we have

$$\rho^*: S^2(T^*_H)^W \to S^2(T^*_G)^W$$
Induced Map on W-Invariants

- $Q(G)$ is functorial. If $\rho : G \rightarrow H$ is a homomorphism we have

$$\rho^* : S^2(T_H^*)^W \rightarrow S^2(T_G^*)^W$$

- Since $S^2(T_H^*)^W$ is generated by some normalized Killing forms q_1, \ldots, q_m, this map is described by their images, called the Rost multipliers of ρ.
The tensor product map

\[\rho: \text{GL}(V_1) \times \text{GL}(V_2) \to \text{GL}(V_1 \otimes V_2) \]

\[(A, B) \mapsto A \otimes B \]
The tensor product map

\[\rho : \text{GL}(V_1) \times \text{GL}(V_2) \to \text{GL}(V_1 \otimes V_2) \]

\[(A, B) \mapsto A \otimes B\]

If \(A = \begin{bmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{bmatrix},\) then \(A \otimes B = \begin{bmatrix} a_{11}B & \ldots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \ldots & a_{nn}B \end{bmatrix}.\)
Kroenecker Tensor Product Map

- The tensor product map

\[\rho: \text{GL}(V_1) \times \text{GL}(V_2) \to \text{GL}(V_1 \otimes V_2) \]

\[(A, B) \mapsto A \otimes B\]

- If \(A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \), \(A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix} \).

- In general we consider

\[\rho: \text{GL}(V_1) \times \cdots \times \text{GL}(V_m) \to \text{GL}(V_1 \otimes \cdots \otimes V_m) \]

\[(A_1, \ldots, A_m) \mapsto A_1 \otimes \cdots \otimes A_m\]
Consider restrictions of this map to the special linear, special orthogonal, and symplectic groups.
Consider restrictions of this map to the special linear, special orthogonal, and symplectic groups.

For the following cases

- $G_1, \ldots, G_n, H = \text{SL}$
- $G_1, \ldots, G_{2m} = \text{Sp}$
 $G_{2m+1}, \ldots, G_n = \text{SO}$
 $H = \text{SO}$
- $G_1, \ldots, G_{2m+1} = \text{Sp}$
 $G_{2m+2}, \ldots, G_n = \text{SO}$
 $H = \text{Sp}$

we consider

$$\rho : G_1(V_1) \times \ldots \times G_n(V_n) \to H(V_1 \otimes \ldots \otimes V_n)$$
Example Computation of ρ^*

$$\rho: \text{SO}(\mathbb{F}^{2n+1}) \times \text{SO}(\mathbb{F}^{2m+1}) \rightarrow \text{SO}(\mathbb{F}^{(2n+1)(2m+1)})$$
Example Computation of ρ^*

\[\rho: \text{SO}(\mathbb{F}^{2n+1}) \times \text{SO}(\mathbb{F}^{2m+1}) \to \text{SO}(\mathbb{F}^{(2n+1)(2m+1)}) \]

Choose \(T_{2n+1} = \{ \text{diag}(t_1, \ldots, t_n, 1, t_n^{-1}, \ldots, t_1^{-1}) \mid t_i \in \mathbb{F}^\times \} \)

and others similarly.
Example Computation of ρ^*

$\rho: \text{SO}(\mathbb{F}^{2n+1}) \times \text{SO}(\mathbb{F}^{2m+1}) \to \text{SO}(\mathbb{F}^{(2n+1)(2m+1)})$

- Choose $T_{2n+1} = \{\text{diag}(t_1, \ldots, t_n, 1, t_n^{-1}, \ldots, t_1^{-1}) \mid t_i \in \mathbb{F}^\times\}$ and others similarly.
- $T^*_{2n+1} = \langle e_i \mid 1 \leq i \leq n \rangle$ where $e_i(\text{diag}(t_1, \ldots, t_1^{-1})) = t_i$.
- $T^*_{(2n+1)(2m+1)} = \langle f_i \mid 1 \leq i \leq 2nm + n + m \rangle$
Example Computation of ρ^*

$\rho: \text{SO}(\mathbb{F}^{2n+1}) \times \text{SO}(\mathbb{F}^{2m+1}) \to \text{SO}(\mathbb{F}^{(2n+1)(2m+1)})$

- Choose $T_{2n+1} = \{\text{diag}(t_1, \ldots, t_n, 1, t_n^{-1}, \ldots, t_1^{-1}) \mid t_i \in \mathbb{F}^\times\}$ and others similarly.
- $T_{2n+1}^* = \langle e_i \mid 1 \leq i \leq n \rangle$ where $e_i(\text{diag}(t_1, \ldots, t_1^{-1})) = t_i$.
- $T_{(2n+1)(2m+1)}^* = \langle f_i \mid 1 \leq i \leq 2nm + n + m \rangle$

\[
\rho^*(f_i) = \begin{cases}
(e_{k+1}, e_r) & 0 \leq k \leq n - 1, 1 \leq r \leq m \\
(e_{k+1}, 0) & r = m + 1 \\
(e_{k+1}, -e_{2m+2-r}) & m + 2 \leq r \leq 2m + 1, k = n \\
(0, e_r) & 1 \leq r \leq m
\end{cases}
\]

where $i = k(2m + 1) + r$ with $0 \leq k \leq 2n$ and $1 \leq r \leq 2m + 1$.
Example Computation of ρ^*

\[
\rho^*\left(q(2n+1)(2m+1)\right) = \rho^* \left(\sum_{i=1}^{2nm+n+m} f_i^2\right) = \sum_{i=1}^{2nm+n+m} \rho^* (f_i)^2.
\]
Example Computation of ρ^*

\[\rho^*(q_{(2n+1)(2m+1)}) = \rho^* \left(\sum_{i=1}^{2nm+n+m} f_i^2 \right) = \sum_{i=1}^{2nm+n+m} \rho^*(f_i)^2. \]
Example Computation of ρ^*

1. $\rho^*(q_{(2n+1)(2m+1)}) = \rho^* \left(\sum_{i=1}^{2nm+n+m} f_i^2 \right) = \sum_{i=1}^{2nm+n+m} \rho^*(f_i)^2$.

2.

3. $((2m + 1)q_{2n+1}, (2n + 1)q_{2m+1})$.
Results

Theorem
Let V_1, \ldots, V_n be vector spaces such that $\dim(V_i) = d_i$. Consider linear algebraic groups G_1, \ldots, G_n, H in one of the previous configurations (where $G_i = \text{Sp}$ only when d_i is even). Consider the Kronecker product map

$$\rho: G_1(V_1) \times \ldots \times G_n(V_n) \to H(V_1 \otimes \ldots \otimes V_n)$$

and let q_1, \ldots, q_n, q_H be the respective normalized Killing forms. Then

$$\rho|_{n}^*(q_H) = \left((d_2 \ldots d_n)q_1, \ldots, (d_1 \ldots \hat{d}_i \ldots d_n)q_i, \ldots, (d_1 \ldots d_{n-1})q_n \right)$$

where \hat{d}_i represents omission.
Thank You.

