Cohomological Obstructions to Quadratic Pairs over Schemes

Cameron Ruether Joint with Philippe Gille and Erhard Neher

Memorial University of Newfoundland

AGAG, University of Virginia May 27, 2023

$$char(\mathbb{F}) \neq 2$$

 $\{ quadratic \ forms \} \longleftrightarrow \{ Symmetric \ bilinear \ forms \}$

$$(q \colon V \to \mathbb{F}) \longmapsto b_q(x, y) = q(x + y) - q(x) - q(y)$$

$$q_b(x) = b(x,x) \longleftarrow (b \colon V \times V \to \mathbb{F})$$

•
$$q = \frac{1}{2}q_{b_q}$$
 and $b = \frac{1}{2}b_{q_b}$.

- $PGO^+(V, q) = PGO^+(End_{\mathbb{F}}(V), \sigma_q)$ when q is regular.
- $PGO^+(A, \sigma)$ are smooth of type D.

In any characteristic, let (A, σ) be a c.s.a. with \mathbb{F} -linear involution.

- σ is orthogonal if σ_{sep} on $A_{sep} = M_r(\mathbb{F}_{sep})$ is adjoint to a symmetric bilinear form.
- σ is *weakly-symplectic* if σ_{sep} is adjoint to a skew-symmetric bilinear form.
- σ is symplectic if σ_{sep} is adjoint to an alternating bilinear form.

If char(\mathbb{F}) = 2, O(A, σ) may not be smooth.

Quadratic Pairs

Definition

Let A be a central simple \mathbb{F} -algebra. A *quadratic pair* on A is (A, σ, f) where

- σ is an orthogonal involution on A, and
- $f: \mathsf{Sym}(A, \sigma) \to \mathbb{F}$ is a linear map satisfying

$$f(a + \sigma(a)) = \operatorname{Trd}_A(a)$$

for all $a \in A$. Here $Sym(A, \sigma) = \{a \in A \mid \sigma(a) = a\}$.

- If char(\mathbb{F}) $\neq 2$, $\Rightarrow f = \frac{1}{2} \operatorname{Trd}_{\mathcal{A}}$.
- The orthogonal group

$$O(A, \sigma, f) = \{a \in A \mid \sigma(a) = a^{-1}, f(asa^{-1}) = f(s)\}$$

is smooth. $O^+(A, \sigma, f)$ is semisimple type *D*.

Quadratic Pairs and Quadratic Forms

• If $A = \operatorname{End}_{\mathbb{F}}(V)$, then σ is adjoint to a regular $b \colon V \times V \to \mathbb{F}$. $(V \otimes_{\mathbb{F}} V, \operatorname{switch}) \xrightarrow{\sim} (\operatorname{End}_{\mathbb{F}}(V), \sigma)$

 $x \otimes y \mapsto b(x, y)$

{quadratic pairs involving σ } \leftrightarrow {q whose polar is b}

Idea: $f(x \otimes x) = q(x)$ and $f(x \otimes y + y \otimes x) = b(x, y)$

Classification

Let (A, σ) c.s.a. with orthogonal involution. Define

$$Sym(A, \sigma) = \{a \in A \mid \sigma(a) = a\}$$
$$Skew(A, \sigma) = \{a \in A \mid \sigma(a) = -a\}$$
$$Symd(A, \sigma) = \{a + \sigma(a) \mid a \in A\}$$
$$Alt(A, \sigma) = \{a - \sigma(a) \mid a \in A\}$$

• The trace form

$$egin{array}{lll} A imes A\mapsto \mathbb{F}\ (a,b)\mapsto {
m Trd}_A(ab) \end{array}$$

is a regular, symmetric, bilinear form.

• $\operatorname{Sym}(A, \sigma)^{\perp} = \operatorname{Alt}(A, \sigma)$ and $\operatorname{Alt}(A, \sigma)^{\perp} = \operatorname{Sym}(A, \sigma)$

Classification

Theorem (KMRT)

If (A, σ, f) is a quadratic pair on A, then there exists $\ell \in A$ such that

- $\ell + \sigma(\ell) = 1$,
- $f(s) = \operatorname{Trd}_{A}(\ell s)$,
- ℓ is unique up to addition by an element from Alt (A, σ) .

Conversely, for any $\ell \in \mathsf{A}$ satisfying $\ell + \sigma(\ell) = 1$, the linear map

$$f: \mathsf{Sym}(A, \sigma) \to \mathbb{F}$$
$$s \mapsto \mathsf{Trd}_A(\ell s)$$

makes (A, σ, f) a quadratic pair. This form only depends on $[\ell] \in A/Alt(A, \sigma)$.

Over a Scheme

Generalized by Calmès and Fasel.

- S is a fixed base scheme
- \mathfrak{Sch}_{S} site with the fppf topology
- \mathcal{O} the sheaf of rings $\mathcal{O}(T) = \Gamma(T, \mathcal{O}_T)$ for $T \in \mathfrak{Sch}_S$
- \mathcal{A} an Azumaya \mathcal{O} -algebra of constant degree. So $\exists \{T_i \to S\}_{i \in I}$ such that

$$\mathcal{A}|_{\mathcal{T}_i} \cong \mathsf{M}_r(\mathcal{O})|_{\mathcal{T}_i}$$

Definition

Let \mathcal{A} be an Azumaya \mathcal{O} -algebra. A *quadratic pair* on \mathcal{A} is (\mathcal{A}, σ, f) where

- σ is an orthogonal involution on \mathcal{A} , and
- $f: Sym_{\mathcal{A},\sigma} \to \mathcal{O}$ is an \mathcal{O} -linear natural transformation satisfying

$$f(a + \sigma(a)) = \operatorname{Trd}_{\mathcal{A}}(a)$$

for all $T \in \mathfrak{Sch}_S$ and $a \in \mathcal{A}(T)$.

Question

- Given (\mathcal{A}, σ) , when can it be extended to (\mathcal{A}, σ, f) ?
- Given (\mathcal{A}, σ) , what is a classification of all possible (\mathcal{A}, σ, f) ?

$\mathsf{Id} + \sigma \colon \mathcal{A} \to \mathcal{A} \text{ and } \mathsf{Id} - \sigma \colon \mathcal{A} \to \mathcal{A}. \text{ Define}$

- $Sym_{\mathcal{A},\sigma} = \ker(\mathsf{Id} \sigma)$
- $Skew_{\mathcal{A},\sigma} = ker(Id + \sigma)$
- $Symd_{\mathcal{A},\sigma} = Im(Id + \sigma)$
- $\mathcal{A}\ell t_{\mathcal{A},\sigma} = \operatorname{Im}(\operatorname{Id} \sigma)$

Over an Affine Scheme

If S is an affine scheme,

- $Sym_{\mathcal{A},\sigma}, \mathcal{A}\ell t_{\mathcal{A},\sigma}$ are direct summands of \mathcal{A} when σ is orthogonal, and mutually perpendicular w.r.t. the trace form.
- So, linear forms $f : Sym_{\mathcal{A},\sigma} \to \mathcal{O}$ correspond to $\ell \in \mathcal{A}(S)$ with $\ell + \sigma(\ell) = 1$ up to addition by an element of $\mathcal{A}\ell t(\mathcal{A}, \sigma)$.

- If S is any scheme, and (\mathcal{A},σ,f) a quadratic pair
 - $\{U_i \rightarrow S\}_{i \in I}$ an affine open cover
 - $(\mathcal{A}|_{U_i}, \sigma|_{U_i}, f|_{U_i})$ will be given by some $\ell_i \in \mathcal{A}(U_i)$ with $\ell_i + \sigma(\ell_i) = 1$.
 - ullet \Rightarrow $1\in \mathcal{Symd}_{\mathcal{A},\sigma}(U_i)$ for all $i\in I$,
 - ullet \Rightarrow $1\in \mathcal{S}_{\mathcal{M}}$ $\mathcal{A}_{\mathcal{A},\sigma}(\mathcal{S}).$

Locally Quadratic Involutions

Definition

We call (\mathcal{A}, σ) an Azumaya \mathcal{O} -algebra with *locally quadratic involution* if $1 \in Symd_{\mathcal{A},\sigma}(S)$.

Cohomological Obstructions

We call $\Omega(\mathcal{A}, \sigma)$ the strong obstruction and $\omega(\mathcal{A}, \sigma)$ the weak obstruction.

Cohomological Obstructions

Theorem (Gille, Neher, R.)

- $\Omega(\mathcal{A}, \sigma) = 0 \Leftrightarrow \exists f = \operatorname{Trd}_{\mathcal{A}}(\ell) \text{ with } \ell + \sigma(\ell) = 1 \text{ for } \ell \in \mathcal{A}(S).$
- $\omega(\mathcal{A}, \sigma) = 0 \Leftrightarrow \exists f : Sym_{\mathcal{A}, \sigma} \to \mathcal{O} \text{ making } (\mathcal{A}, \sigma, f) \text{ a quadratic pair.}$
- There is a classification

$$\{f \text{ extending } (\mathcal{A},\sigma)\} \leftrightarrow \pi(\mathcal{S})^{-1}(1) \subset (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A},\sigma})(\mathcal{S}).$$

Proof.

- Any (\mathcal{A}, σ, f) is given locally by ℓ_i , which glue to a section $\lambda \in (\mathcal{A}/\mathcal{A}\ell t_{\mathcal{A},\sigma})(S)$.
- Any global section λ is locally given by l_i from A, the f_i = Trd_A(l_i) glue into a global f.
- $\omega(\mathcal{A},\sigma) = [\pi^{-1}(1)] \in H^1(S, \mathcal{S}_{k\!e\!v}_{\mathcal{A},\sigma}/\mathcal{A}_{\ell}t_{\mathcal{A},\sigma})$ where

$$\pi^{-1}(1) \colon \mathfrak{Seh}_{\mathcal{S}} o \mathfrak{Sets}, \quad \pi(\mathcal{T})^{-1}(1|_{\mathcal{T}})$$

An Example

Let $char(\mathbb{F}) = 2$. Take *E* an ordinary elliptic curve as the base scheme.

$$E \xrightarrow{\cdot 2} E$$

is an $E[2] = \mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z}$ torsor.

$$\mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathsf{PGL}_2$$

 $\Rightarrow E \wedge^{\mu_2 \times_{\mathbb{F}} \mathbb{Z}/2\mathbb{Z}} \text{PGL}_2 \text{ is a PGL}_2\text{-torsor, so defines } \mathcal{Q} \text{ a quaternion algebra.}$ It has canonical involution (\mathcal{Q}, σ) .

- σ is symplectic, hence also orthogonal.
- σ can be extended to a quadratic pair (\Rightarrow locally quadratic). $\Rightarrow \omega(Q, \sigma) \neq 0.$
- $\mathcal{Q}(E) = \mathbb{F}$. So $\ell + \sigma(\ell) = 2\ell = 0$ for all $\ell \in \mathcal{Q}(E)$. $\Rightarrow \Omega(\mathcal{Q}, \sigma) = 0$.

Another Example

char(\mathbb{F}) = 2, $\mathbb{F} = \overline{\mathbb{F}}$. Let $\Gamma = \mathsf{PGL}(\mathbb{F}_4)$ as an abstract group, $\Gamma_{\mathsf{Spec}(\mathbb{F})}$ the constant group scheme.

Serre: $\exists Y \to S$ a Γ -cover between smooth projective \mathbb{F} -varieties. This is a $\Gamma_{\text{Spec}(\mathbb{F})}$ -torsor.

$$\Gamma_{\mathsf{Spec}(\mathbb{F})} \hookrightarrow \mathsf{PGL}_2$$

 $\Rightarrow Y \wedge^{\Gamma_{\text{Spec}}(\mathbb{F})} \text{PGL}_2$ is a PGL₂-torsor, so defines (\mathcal{Q}, σ) a quaternion algebra with symplectic/orthogonal involution.

- σ is locally quadratic.
- (\mathcal{Q}, σ) splits over Y.
- If we had (\mathcal{Q}, σ, f) , then $f|_Y : Sym_{M_2(\mathcal{O})|_Y, \sigma|_Y} \to \mathcal{O}|_Y$ must be Γ -equivariant.
- $\Rightarrow f = 0$, contradiction.
- So $\omega(\mathcal{Q}, \sigma) \neq 0$. ($\Rightarrow \Omega(\mathcal{Q}, \sigma) \neq 0$.)

Thank You