Cohomological Obstructions to Quadratic Pairs over Schemes

Cameron Ruether Joint with Philippe Gille and Erhard Neher

Memorial University of Newfoundland

AGAG, University of Virginia May 27, 2023

$\operatorname{char}(\mathbb{F}) \neq 2$

\{quadratic forms\} \longleftrightarrow \{Symmetric bilinear forms\}

$$
q_{b}(x)=b(x, x) \longleftrightarrow(b: V \times V \rightarrow \mathbb{F})
$$

- $q=\frac{1}{2} q_{b_{q}}$ and $b=\frac{1}{2} b_{q_{b}}$.
- $\mathrm{PGO}^{+}(V, q)=\mathrm{PGO}^{+}\left(\operatorname{End}_{\mathbb{F}}(V), \sigma_{q}\right)$ when q is regular.
- $\mathrm{PGO}^{+}(A, \sigma)$ are smooth of type D.

Involutions

In any characteristic, let (A, σ) be a c.s.a. with \mathbb{F}-linear involution.

- σ is orthogonal if $\sigma_{\text {sep }}$ on $A_{\text {sep }}=\mathrm{M}_{r}\left(\mathbb{F}_{\text {sep }}\right)$ is adjoint to a symmetric bilinear form.
- σ is weakly-symplectic if $\sigma_{\text {sep }}$ is adjoint to a skew-symmetric bilinear form.
- σ is symplectic if $\sigma_{\text {sep }}$ is adjoint to an alternating bilinear form. If $\operatorname{char}(\mathbb{F})=2, \mathrm{O}(A, \sigma)$ may not be smooth.

Quadratic Pairs

Definition

Let A be a central simple \mathbb{F}-algebra. A quadratic pair on A is (A, σ, f) where

- σ is an orthogonal involution on A, and
- $f: \operatorname{Sym}(A, \sigma) \rightarrow \mathbb{F}$ is a linear map satisfying

$$
f(a+\sigma(a))=\operatorname{Trd}_{A}(a)
$$

for all $a \in A$. Here $\operatorname{Sym}(A, \sigma)=\{a \in A \mid \sigma(a)=a\}$.

- If $\operatorname{char}(\mathbb{F}) \neq 2, \Rightarrow f=\frac{1}{2} \operatorname{Trd}_{\mathcal{A}}$.
- The orthogonal group

$$
\mathrm{O}(A, \sigma, f)=\left\{a \in A \mid \sigma(a)=a^{-1}, f\left(a s a^{-1}\right)=f(s)\right\}
$$

is smooth. $\mathrm{O}^{+}(A, \sigma, f)$ is semisimple type D.

Quadratic Pairs and Quadratic Forms

- If $A=\operatorname{End}_{\mathbb{F}}(V)$, then σ is adjoint to a regular $b: V \times V \rightarrow \mathbb{F}$.

$$
\begin{aligned}
\left(V \otimes_{\mathbb{F}} V, \text { switch }\right) & \xrightarrow{\sim}\left(\operatorname{End}_{\mathbb{F}}(V), \sigma\right) \\
x \otimes y & \mapsto b(x, \ldots) y
\end{aligned}
$$

Theorem (KMRT)

\{quadratic pairs involving $\sigma\} \leftrightarrow\{q$ whose polar is $b\}$
Idea: $f(x \otimes x)=q(x)$ and $f(x \otimes y+y \otimes x)=b(x, y)$

Classification

Let (A, σ) c.s.a. with orthogonal involution. Define

$$
\begin{aligned}
\operatorname{Sym}(A, \sigma) & =\{a \in A \mid \sigma(a)=a\} \\
\operatorname{Skew}(A, \sigma) & =\{a \in A \mid \sigma(a)=-a\} \\
\operatorname{Symd}(A, \sigma) & =\{a+\sigma(a) \mid a \in A\} \\
\operatorname{Alt}(A, \sigma) & =\{a-\sigma(a) \mid a \in A\}
\end{aligned}
$$

- The trace form

$$
\begin{aligned}
A \times A & \mapsto \mathbb{F} \\
(a, b) & \mapsto \operatorname{Trd}_{A}(a b)
\end{aligned}
$$

is a regular, symmetric, bilinear form.

- $\operatorname{Sym}(A, \sigma)^{\perp}=\operatorname{Alt}(A, \sigma)$ and $\operatorname{Alt}(A, \sigma)^{\perp}=\operatorname{Sym}(A, \sigma)$

Classification

Theorem (KMRT)

If (A, σ, f) is a quadratic pair on A, then there exists $\ell \in A$ such that

- $\ell+\sigma(\ell)=1$,
- $f(s)=\operatorname{Trd}_{A}(\ell s)$,
- ℓ is unique up to addition by an element from $\operatorname{Alt}(A, \sigma)$.

Conversely, for any $\ell \in A$ satisfying $\ell+\sigma(\ell)=1$, the linear map

$$
\begin{aligned}
f: \operatorname{Sym}(A, \sigma) & \rightarrow \mathbb{F} \\
s & \mapsto \operatorname{Trd}_{A}(\ell s)
\end{aligned}
$$

makes (A, σ, f) a quadratic pair. This form only depends on $[\ell] \in A / \operatorname{Alt}(A, \sigma)$.

Over a Scheme

Generalized by Calmès and Fasel.

- S is a fixed base scheme
- $\mathfrak{S c h}_{S}$ site with the fppf topology
- \mathcal{O} the sheaf of rings $\mathcal{O}(T)=\Gamma\left(T, \mathcal{O}_{T}\right)$ for $T \in \mathfrak{S c h}_{S}$
- \mathcal{A} an Azumaya \mathcal{O}-algebra of constant degree. So $\exists\left\{T_{i} \rightarrow S\right\}_{i \in I}$ such that

$$
\left.\left.\mathcal{A}\right|_{T_{i}} \cong \mathrm{M}_{r}(\mathcal{O})\right|_{T_{i}}
$$

Definition

Let \mathcal{A} be an Azumaya \mathcal{O}-algebra. A quadratic pair on \mathcal{A} is (\mathcal{A}, σ, f) where

- σ is an orthogonal involution on \mathcal{A}, and
- $f: \operatorname{Sym}_{\mathcal{A}, \sigma} \rightarrow \mathcal{O}$ is an \mathcal{O}-linear natural transformation satisfying

$$
f(a+\sigma(a))=\operatorname{Trd}_{\mathcal{A}}(a)
$$

for all $T \in \mathfrak{S c h}_{S}$ and $a \in \mathcal{A}(T)$.

Question

- Given (\mathcal{A}, σ), when can it be extended to (\mathcal{A}, σ, f) ?
- Given (\mathcal{A}, σ), what is a classification of all possible (\mathcal{A}, σ, f) ?

Id $+\sigma: \mathcal{A} \rightarrow \mathcal{A}$ and Id $-\sigma: \mathcal{A} \rightarrow \mathcal{A}$. Define

- $\operatorname{Sym}_{\mathcal{A}, \sigma}=\operatorname{ker}(\operatorname{ld}-\sigma)$
- Skew $_{\mathcal{A}, \sigma}=\operatorname{ker}(\mathrm{ld}+\sigma)$
- Symd $_{\mathcal{A}, \sigma}=\operatorname{Im}(\operatorname{ld}+\sigma)$
- $\mathcal{A l t}_{\mathcal{A}, \sigma}=\operatorname{Im}(\mathrm{Id}-\sigma)$

Over an Affine Scheme

If S is an affine scheme,

- $\operatorname{Sym}_{\mathcal{A}, \sigma}, \mathcal{A l t}_{\mathcal{A}, \sigma}$ are direct summands of \mathcal{A} when σ is orthogonal, and mutually perpendicular w.r.t. the trace form.
- So, linear forms $f: \operatorname{SSm}_{\mathcal{A}, \sigma} \rightarrow \mathcal{O}$ correspond to $\ell \in \mathcal{A}(S)$ with $\ell+\sigma(\ell)=1$ up to addition by an element of $\mathcal{A} \ell t(\mathcal{A}, \sigma)$.

If S is any scheme, and (\mathcal{A}, σ, f) a quadratic pair

- $\left\{U_{i} \rightarrow S\right\}_{i \in I}$ an affine open cover
- $\left(\left.\mathcal{A}\right|_{U_{i}},\left.\sigma\right|_{U_{i}},\left.f\right|_{U_{i}}\right)$ will be given by some $\ell_{i} \in \mathcal{A}\left(U_{i}\right)$ with $\ell_{i}+\sigma\left(\ell_{i}\right)=1$.
- $\Rightarrow 1 \in \operatorname{Symd}_{\mathcal{A}, \sigma}\left(U_{i}\right)$ for all $i \in I$,
- $\Rightarrow 1 \in \operatorname{Symd}_{\mathcal{A}, \sigma}(S)$.

Locally Quadratic Involutions

Definition

We call (\mathcal{A}, σ) an Azumaya \mathcal{O}-algebra with locally quadratic involution if $1 \in \operatorname{Symd}_{\mathcal{A}, \sigma}(S)$.

Cohomological Obstructions

$$
\begin{aligned}
& \mathcal{A}(S) \longrightarrow \operatorname{Symd}_{\mathcal{A}, \sigma}(S) \longrightarrow H^{1}\left(S, \text { Skew }_{\mathcal{A}, \sigma}\right) \\
& \downarrow_{\left(\mathcal{A} / \mathcal{A l t}_{\mathcal{A}, \sigma}\right)(S) \xrightarrow{\pi(S)} \operatorname{Symd}_{\mathcal{A}, \sigma}(S) \longrightarrow H^{1}\left(S, \operatorname{Skew}_{\mathcal{A}, \sigma} / \mathcal{A l t}_{\mathcal{A}, \sigma}\right) \longrightarrow \ldots}{ }^{\downarrow}
\end{aligned}
$$

We call $\Omega(\mathcal{A}, \sigma)$ the strong obstruction and $\omega(\mathcal{A}, \sigma)$ the weak obstruction.

Cohomological Obstructions

Theorem (Gille, Neher, R.)

- $\Omega(\mathcal{A}, \sigma)=0 \Leftrightarrow \exists f=\operatorname{Trd}_{\mathcal{A}}\left(\ell _\right)$with $\ell+\sigma(\ell)=1$ for $\ell \in \mathcal{A}(S)$.
- $\omega(\mathcal{A}, \sigma)=0 \Leftrightarrow \exists f: \operatorname{Sin}_{\mathcal{A}, \sigma} \rightarrow \mathcal{O}$ making (\mathcal{A}, σ, f) a quadratic pair.
- There is a classification

$$
\{f \text { extending }(\mathcal{A}, \sigma)\} \leftrightarrow \pi(S)^{-1}(1) \subset\left(\mathcal{A} / \mathcal{A} l t_{\mathcal{A}, \sigma}\right)(S) .
$$

Proof.

- Any (\mathcal{A}, σ, f) is given locally by ℓ_{i}, which glue to a section $\lambda \in\left(\mathcal{A} / \mathcal{A l t}_{\mathcal{A}, \sigma}\right)(S)$.
- Any global section λ is locally given by ℓ_{i} from \mathcal{A}, the $f_{i}=\operatorname{Trd}_{\mathcal{A}}\left(\ell_{i_{-}}\right)$ glue into a global f.
- $\omega(\mathcal{A}, \sigma)=\left[\pi^{-1}(1)\right] \in H^{1}\left(S, \operatorname{Skew}_{\mathcal{A}, \sigma} / \mathcal{A l t}_{\mathcal{A}, \sigma}\right)$ where

$$
\pi^{-1}(1): \mathfrak{S c h}_{S} \rightarrow \mathfrak{S e t s}, \quad \pi(T)^{-1}\left(\left.1\right|_{T}\right)
$$

An Example

Let $\operatorname{char}(\mathbb{F})=2$. Take E an ordinary elliptic curve as the base scheme.

$$
E \xrightarrow{\cdot 2} E
$$

is an $E[2]=\mu_{2} \times_{\mathbb{F}} \mathbb{Z} / 2 \mathbb{Z}$ torsor.

$$
\mu_{2} \times_{\mathbb{F}} \mathbb{Z} / 2 \mathbb{Z} \hookrightarrow \mathrm{PGL}_{2}
$$

$\Rightarrow E \wedge{ }^{\mu_{2} \times_{\mathbb{F}} \mathbb{Z} / 2 \mathbb{Z}} \mathrm{PGL}_{2}$ is a PGL_{2}-torsor, so defines \mathcal{Q} a quaternion algebra. It has canonical involution (\mathcal{Q}, σ).

- σ is symplectic, hence also orthogonal.
- σ can be extended to a quadratic pair (\Rightarrow locally quadratic).
$\Rightarrow \omega(\mathcal{Q}, \sigma) \neq 0$.
- $\mathcal{Q}(E)=\mathbb{F}$. So $\ell+\sigma(\ell)=2 \ell=0$ for all $\ell \in \mathcal{Q}(E) . \Rightarrow \Omega(\mathcal{Q}, \sigma)=0$.

Another Example

$\operatorname{char}(\mathbb{F})=2, \mathbb{F}=\overline{\mathbb{F}}$. Let $\Gamma=\operatorname{PGL}\left(\mathbb{F}_{4}\right)$ as an abstract group, $\Gamma_{\mathrm{Spec}(\mathbb{F})}$ the constant group scheme.
Serre: $\exists Y \rightarrow S$ a Γ-cover between smooth projective \mathbb{F}-varieties. This is a $\Gamma_{\text {Spec }(\mathbb{F})}$-torsor.

$$
\Gamma_{\mathrm{Spec}(\mathbb{F})} \hookrightarrow \mathrm{PGL}_{2}
$$

$\Rightarrow Y \wedge{ }^{\Gamma_{\text {Spec }(\mathbb{F})}} \mathrm{PGL}_{2}$ is a PGL_{2}-torsor, so defines (\mathcal{Q}, σ) a quaternion algebra with symplectic/orthogonal involution.

- σ is locally quadratic.
- (\mathcal{Q}, σ) splits over Y.
- If we had (\mathcal{Q}, σ, f), then $\left.f\right|_{Y}:\left.\operatorname{Sym}_{\left.\mathrm{M}_{2}(\mathcal{O})\right|_{Y,\left.\sigma\right|_{Y}}} \rightarrow \mathcal{O}\right|_{Y}$ must be Γ-equivariant.
- $\Rightarrow f=0$, contradiction.
- So $\omega(\mathcal{Q}, \sigma) \neq 0$. $(\Rightarrow \Omega(\mathcal{Q}, \sigma) \neq 0$.)

Thank You

